319 research outputs found

    Kinematic Evolution of Simulated Star-Forming Galaxies

    Get PDF
    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ~8 billion years since z=1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma_g) and increase in ordered rotation (Vrot) with time. The slopes of the relations between both sigma_g and Vrot with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations, and they both have similarly large scatter. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.Comment: ApJ accepted; 6 pages; A pdf with full resolution figures can be found at https://db.tt/8y4Vzaff (2.8M

    EHR-Based Care Coordination Performance Measures in Ambulatory Care

    Get PDF
    Describes electronic health record-based measures for assessing coordination in referrals, including information communicated with referral, communication to patient, and specialist report to primary care physician. Offers preliminary evaluation findings

    Privacy and Security in Mobile Health – a Research Agenda

    Get PDF
    Mobile health technology has great potential to increase healthcare quality, expand access to services, reduce costs, and improve personal wellness and public health. However, mHealth also raises significant privacy and security challenges

    The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Get PDF
    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 < z < 1:4 from the All-Wavelength Extended Groth Strip International Survey (AEGIS). This consists in the Bayesian analysis of the observed galaxy spectral ' energy distributions with a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R,l and K(sub s) bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFH on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts

    Variation in Provider Identification of Obesity by Individual- and Neighborhood-Level Characteristics among an Insured Population

    Get PDF
    Objective. The purpose of this study was to examine whether neighborhood- and individual-level characteristics affect providers' likelihood of providing an obesity diagnosis code in their obese patients' claims. Methods. Logistic regressions were performed with obesity diagnosis code serving as the outcome variable and neighborhood characteristics and member characteristics serving as the independent variables (N = 16,151 obese plan members). Results. Only 7.7 percent of obese plan members had an obesity diagnosis code listed in their claims. Members living in neighborhoods with the largest proportions of Blacks were 29 percent less likely to receive an obesity diagnosis (P < .05). The odds of having an obesity diagnosis code were greater among members who were female, aged 44 or below, hypertensive, dyslipidemic, BMI ≥ 35 kg/m2, had a larger number of provider visits, or who lived in an urban area (all P < .05). Conclusions. Most health care providers do not include an obesity diagnosis code in their obese patients' claims. Rates of obesity identification were strongly related to individual characteristics and somewhat associated with neighborhood characteristics

    Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at z>1

    Get PDF
    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two hour exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.Comment: 7 pages, 4 figures. Accepted to ApJ Letter

    Performance Measures Using Electronic Health Records: Five Case Studies

    Get PDF
    Presents the experiences of five provider organizations in developing, testing, and implementing four types of electronic quality-of-care indicators based on EHR data. Discusses challenges, and compares results with those from traditional indicators

    A WFC3 Grism Emission Line Redshift Catalog in the GOODS-South Field

    Get PDF
    We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.Comment: 25 Pages, 9 Figures, submitted to A

    Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at \u3cem\u3ez\u3c/em\u3e \u3e 1

    Get PDF
    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z ~ 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/Hβ ratio is insufficient as an active galactic nucleus (AGN) indicator at z \u3e 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/Hβ versus [N II]/Hα and [S II]/Hα) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that composite galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly ~2/3 of the z ~ 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z \u3e 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts
    corecore